学术报告:Asymptotic Properties of Multi-species Lotka-Volterra Models with Regime Switching Involving Weak and Strong Interactions

发布时间:2019-07-08文章来源:数学科学学院浏览:357

时间:710日上午9:00

地点:A426

报告人:李晓月


摘要: This work focuses on  multi-species Lotka-Volterra models with regime switching modulated by a continuous-time Markov chain involving a small parameter. The small parameter is used to reflect different rates of the switching among a large number of states representing the discrete events. Using  perturbed Lyapunov function methods and the structure of the limit system as a bridge, stochastic permanence and  extinction are obtained. Sufficient conditions under which the measures of the original system converge to the invariant measure of that of the limit system are provided. A couple of examples and numerical simulations are given to illustrate our results.

 

专家简介:李晓月,东北师范大学数学与统计学院教授,博导。近些年来主要从事随机微分方程稳定性理论以及数值逼近方面的研究,成果发表在 JDE, SIAM J. Num. Anal., Automatica 等多个国际杂志上。曾主持国际自然科学基金面上项目,国家自然科学基金青年项目,参与了多项国家自然科学基金和教育部项目的研究工作。200711-200811月访问英国斯特莱斯克莱德大学;201411-201511月访问美国韦恩州立大学。现为 Mathematical Review以及多个杂志的审稿人。